榴莲视频官网_国产尤物精品视频_在线成年人视频_国产一区二区三区夜色

首頁 > 綜合復習 > 高中 > 數學 > 全一冊 > 正文

高中數學復習專題一第一講《集合常用邏輯用語》

點贊 收藏 評價 測速
課堂提問

課程內容

《集合常用邏輯用語》
真題熱身
1.設集合U={1,2,3,4,5,6},M={1,2,4},則CuM=( C)
A U      B {1,3,5}     C {3,5,6}      D {2,4,6}
2.若p是真命題,q是假命題,則下列結論錯誤的是(①②③)
①p∧q是真命題;  ②p∨q是假命題    ③′p是真命題    ④′q是真命題
3.設a b∈R,“a=0”是“復數a+bi是純虛數”的(B )
A 充分不必要條件   B 必要而不充分條件   C 充分必要條件   D 既不充分也不必要條件
故選:B
考點整合
1.集合
(1)集合元素的三個特征:確定性、互異性、無序性,是判斷某些對象能否構成一個集合或判斷兩集合是否相等的依據。
(2)集合的表示方法:列舉法、描述法、圖示法
要特別注意用描述法表示集合時先弄清楚集合的元素是什么,再進行集合間關系的判斷及運算。
(3)集合間的關系:子集、真子集、孔集、集合相等,在集合間的運算中藥注意空集的情形
(4)重要結論
A∩B=A≒AB;   A∪B=A≒B A
2.四種命題間的關系
兩個命題互為逆否命題,它們有相同的真假性;
兩個命題為互逆命題或互否命題,它們的真假性沒有關系;
一個命題的逆命題與它的否命題同真同假。
3.含有一個量詞的否定
(1)全稱命題p:,它的否定:是特殊命題;
(2)特稱命題p:,它的否定:是全稱命題
4.充分、必要條件
設集合A={x|x滿足條件p},B={x|x滿足條件q},則有

分類突破
一、集合間關系與運算
例 1 若集合A={y|y=x3,-1≦x≦1},B=﹛x|y=√1-x﹜,則A∩B=[-1,1].
歸納拓展
解答集合間關系與運算問題的一般步驟:先正確理解各個集合的含義,認清集合元素的屬性;再依據元素的不同屬性采用不同的方法對集合進行化簡求解,一般的規律為:
(1)若給定的集合是不等式的解集,用數軸求解;
(2)若給定的集合時點集,用數形結合法求解;
(3)若給定的集合時抽象集合,用Venn圖求解。
變式訓練1
(1)設集合M={y|y-m≤0},N=﹛y|y=2x次方-1,x∈R﹜,若M∩N≠空集,則實數m的取值范圍為(-1,+∞)
(2)已知集合A=﹛1,3,√m﹜,B=﹛1,m﹜,A∪B=A,則m=( B)
A 0或√3     B 0或3      C 1或√3      D 1或3
二、邏輯聯結詞、全稱(特稱)命題
例 2 已知命題p:“任意數x∈[1,2],x2-a2≥0”,命題q:“Ex0∈R,xo2+2axo+2-a=0”,若命題“p且q”是真命題求實數a的取值范圍。
解:由“p且q”是真命題,則p為真命題,q也為真命題
若p為真命題,即x∈[1,2]時,a≤x2恒成立,
∴a≤1.
若q為真命題,即x2+2ax+2-a=0有實根,
∴⊿=4a2-4(2-a)≥0,即a≥1或a≤-2
綜上,所求實數a的取值范圍為a≤-2或a=1.
歸納拓展
含有邏輯聯結詞的命題要首先確定構成命題的(一個或兩個)命題的真假,求出此時參數成立的條件,再求出含邏輯聯結詞的命題成立的條件。
三、充分,必要條件
例 2  已知p:x2-8x-20≦0,q:x2-2x+1-m2≤0(m>0),且非p是非q的必要不充分條件,求實數m的取值范圍。
解  由x2-8x-20≦0,得-2≤x≤10,
由x2-2x+1-m2≤0(m>0),得1-m≤x≤1+m
∵非p是非q的必要不充分條件,
∴q是p的必要不充分條件,即p是q的充分不必要條件
即p可以推出q,但q不可以推出p,
∴﹛x|-2≤x≤10﹜是﹛x|1-m≤x≤1+m﹜的真子集
∴1-m≤-2,1+m≥10,解得m≥9
∴實數m的取值范圍為﹛m|m≥9﹜
歸納拓展  一般地,在設計到求字母參數的取值范圍的充要條件的問題中,常常要利用集合的包含,相等關系來考慮,非p與非q是兩個非空的數集,非p是非q的必要而不充分條件,即非q可以推出非q,深刻理解這一點,是解決本例的關鍵。另外,一個命題與它的逆否命題是等價命題,故常將非p是非q的必要不充分條件,等價轉化為q是p的必要不充分條件。
變式訓練3
命題甲:x≠2或y≠3;命題乙:x+y≠5,則甲是乙的(必要不充分)條件。
規范演練
一 填空題
1.設全集為R,集合A=﹛x|-1<x<1﹜,B=﹛x|x≥0﹜,則CR(A∪B)=﹛x|x≤-1﹜
2.已知命題p:自然數n∈N,2的n次方>1000,則非p為任意數n∈N,2的n次方≤1000
解析:由于存在性命題的否定是全稱命題,因而非p為任意數n∈N,2的n次方≤1000

 

此內容正在抓緊時間編輯中,請耐心等待

孫老師

女,中教高級職稱

優秀教師,高級教師職稱。善于引導、啟發學生,培養學生的邏輯思維,激發孩子對數學學習的興趣。

聯系我們 版權說明 幫助中心 在線客服

?2016 同桌100 All Rights Reserved