課程內容
《等差數列前n項和的性質及其應用》
練習:
1、若一個等差數列前3項和為34,最后三項和為146,且所有項的和為390,則這個數列共有_______項。
2、已知兩個等差數列{an}{bn},它們的前n項和分別是Sn,Tn,若Sn/Tn=(2n+3)/(3n-1),求a9/b9。
等差數列的前n項和性質:
1、已知{an}是公差為d的等差數列,若b1=a1+a2+…+ak,b2=ak+1+ak+2+…+a2k,b3=a2k+1+a2k+2+…+a3k,…,
則:b1,b2,b3,…,成等差數列,公差為kd。
(等差數列等分若干段后,各段和依序成等差數列。)
數列{an}是公差為d的等差數列,則Sn=An2+Bn → Sn/n=An+B → {Sn/n}是等差數列,公差為A。
2、已知{an}是公差為d的等差數列,Sn為數列{an}的前n項和,則{Sn/n}是等差數列,公差為d/2。
等差數列的前n項和的最值問題:
例1:在等差數列{an}中,a1=-60,a17=-12,
(1)該數列第幾項開始為正?
(2)前多少項和最小,并求其最小值?
(3)求{an}前n項和Sn?
(4)求{|an|}前n項和Tn?
對等差數列前n項和的最值問題有兩種方法:
(1)利用an:
當a1>0,d<0,前n項和有最大值(可由an≥0,且an+1≤0,求得n的值)。
當a1<0,d>0,前n項和有最小值(可由an≤0,且an+1≥0,求得n的值)。
(2)利用Sn:由Sn=(d/2)n2+(a1-d/2)n二次函數配方法求得最值時n的值。
例2:已知等差數列{an}中,Sn為前n項和,a3=12,且S12>0,S13<0。
(1)求公差d的取值范圍。
(2)前幾項和最大?并說明理由。
等差數列奇數項、偶數項和問題
結論:設數列{an}是等差數列,且公差為d,
(Ⅰ)若項數為偶數,設共有2n項,則①S偶-S奇=nd;②S奇/S偶=an/an+1;
結論:設數列{an}是等差數列,且公差為d,
(Ⅱ)若項數為偶數,設共有2n+1項,則①S奇-S偶=an+1=a中;②S奇/S偶=(n+1)/n。
例3:在等差數列{an}中,前m項(m為奇數且m大于1)和為77,其中偶數項和為33,且a1-am=18,求這個數列的通項公式。
例4:已知等差數列{an}的項數為偶數,且奇數的和為24,偶數項的和為30,最后一項與首項之差為10.5,求此數列的首項,公差及項數。
此內容正在抓緊時間編輯中,請耐心等待
王老師
男,中教高級職稱
中學數學高級教師,長期從事中學數學教學工作。具有豐富的教學經驗和扎實的理論專業知識。